Modeling The Business Cycle Part III - Enterprise Value

Gary Schurman, MBE, CFA

October, 2020

We will define enterprise value to be the present value of net cash flow expected to be received over a time interval of finite or infinite length. In this white paper we will build a model that calculates enterprise value for a company whose revenues are correlated with the business cycle. To that end we will work through the following hypothetical problem from Part I...

Our Hypothetical Problem

In Parts I and II we were tasked with forecasting revenue, net income and net investment for ABC Company. The table below presents ABC Company's go-forward model assumptions...

Table 1: Model Assumptions

Description	Balance	Notes	
Annualized revenue at time zero (in thousands)	\$10,000	Current revenue annualized	
Annualized revenue growth rate $(\%)$	5.00	Discrete-time secular growth rate (RGR)	
Annualized revenue volatility (%)	25.00	Secular growth rate standard deviation	
Assets as a percent of annualized revenue $(\%)$	60.00	Total assets divided by annualized revenue	
Return on assets $(\%)$	13.50	After-tax ROA	
Cost of capital (%)	12.00	Discrete-time annualized discount rate	
Peak-to-trough change in revenue (%)	50.00	Excludes secular growth rate	
Business cycle length in months	60	Peak-to-peak or trough-to-trough	

We are tasked with answering the following questions:

Question 1: What is enterprise value at time zero given that cash flow is received in perpetuity?

Question 2: Using the answer to the question above by how much do we overestimate enterprise value if we don't account for the business cycle?

Question 3: What is enterprise value at the end of year 3 given that cash flow is received over the finite time interval [3, 20]?

Base Equations

Table 2: Model Parameter Values From Part II

Symbol	Description	Value
R_0	Actual annualized revenue at time zero	\$10,000,000
λ	Continuous-time secular revenue growth rate	0.0488
π	After-tax return on assets	0.1350
ϵ	Ratio of total assets to annualized revenue	0.6000
β	Business cycle sine wave radians	1.2566
Δ	Business cycle sine wave amplitude	0.2500
ϕ	Current position in the business cycle (in years)	1.2500

In Part II we defined the variable A_t to be total assets at time t. Using the parameters in Table 2 above the equation for expected total assets at time t from the perspective of time zero is... [2]

$$\mathbb{E}\left[A_t\right] = \epsilon R_0 \left(1 + \Delta \sin(\beta \phi)\right)^{-1} \operatorname{Exp}\left\{\lambda t\right\} \left(1 + \Delta \sin(\beta (t + \phi))\right)$$
(1)

Using Equation (1) above and the parameters in Table 2 above the equation for the derivative of total assets with respect to time is... [2]

$$\frac{\delta}{\delta t} \mathbb{E}\left[A_t\right] = \epsilon R_0 \left(1 + \Delta \sin(\beta \phi)\right)^{-1} \exp\left\{\lambda t\right\} \left(\lambda + \Delta \lambda \sin(\beta (t + \phi)) + \Delta \beta \cos(\beta (t + \phi))\right)$$
(2)

We will define the variable κ to be the continuous time discount rate and the variable α to be the difference between the secular revenue growth rate and the cost of capital. Using the model assumptions in Table 1 and the parameters in Table 2 above the equations for these two variables are...

 $\kappa = \ln(1+0.12) = 0.1133$...and... $\alpha = \lambda - \kappa = 0.0488 - 0.1133 = -0.0645$ (3)

Enterprise Value

We will define the variable $\bar{N}_{a,b}$ to be the present value at time *a* of after-tax net income expected to be realized over the time interval [a, b]. Using Equations (1) and (3) above the equation for the present value of net income is...

$$\bar{N}_{a,b} = \int_{a}^{b} \pi \mathbb{E} \left[A_{t} \right] \exp \left\{ -\kappa \left(t - a \right) \right\} \delta t$$

$$= \pi \epsilon R_{0} \left(1 + \Delta \sin(\beta \phi) \right)^{-1} \left(\int_{a}^{b} \exp \left\{ \lambda t \right\} \delta t + \Delta \int_{a}^{b} \exp \left\{ \lambda t \right\} \sin(\beta \left(t + \phi \right)) \delta t \right) \exp \left\{ -\kappa \left(t - a \right) \right\} \delta t$$

$$= \pi \epsilon R_{0} \left(1 + \Delta \sin(\beta \phi) \right)^{-1} \exp \left\{ \kappa a \right\} \left(\int_{a}^{b} \exp \left\{ \alpha t \right\} \delta t + \Delta \int_{a}^{b} \exp \left\{ \alpha t \right\} \sin(\beta \left(t + \phi \right)) \delta t \right) \tag{4}$$

Using Appendix Equations (16) and (17) below we can rewrite Equation (4) above as...

$$\bar{N}_{a,b} = \pi \epsilon R_0 \left(1 + \Delta \sin(\beta \phi) \right)^{-1} \operatorname{Exp}\left\{ \kappa a \right\} \left(I(a,b)_1 + \Delta I(a,b)_2 \right)$$
(5)

We will define the variable $\overline{M}_{a,b}$ to be the present value at time *a* of expected cumulative investment over the time interval [a, b]. The equation for the present value of cumulative investment is...

$$\bar{M}_{a,b} = \int_{a}^{b} \frac{\delta}{\delta t} \mathbb{E} \Big[A_t \Big] \exp \Big\{ -\kappa (t-a) \Big\} \delta t$$

$$= \exp \Big\{ \kappa a \Big\} \int_{a}^{b} \epsilon R_0 \Big(1 + \Delta \sin(\beta \phi) \Big)^{-1} \Big(\lambda \exp \Big\{ \lambda t \Big\} + \Delta \beta \exp \Big\{ \lambda t \Big\} \cos(\beta (t+\phi)) \\
+ \Delta \lambda \exp \Big\{ \lambda t \Big\} \sin(\beta (t+\phi)) \Big) \exp \Big\{ -\kappa t \Big\} \delta t$$

$$= \epsilon R_0 \Big(1 + \Delta \sin(\beta \phi) \Big)^{-1} \exp \Big\{ \kappa a \Big\} \Big(\lambda \int_{a}^{b} \exp \Big\{ \alpha t \Big\} \delta t + \Delta \beta \lambda \int_{a}^{b} \exp \Big\{ \alpha t \Big\} \cos(\beta (t+\phi)) \delta t$$

$$+ \Delta \lambda \int_{a}^{b} \exp \Big\{ \alpha t \Big\} \sin(\beta (t+\phi)) \delta t \Big) \tag{6}$$

Using Appendix Equations (16), (17) and (18) below we can rewrite Equation (6) above as...

$$\bar{M}_{a,b} = \epsilon R_0 \left(1 + \Delta \sin(\beta \phi) \right)^{-1} \operatorname{Exp}\left\{ \kappa a \right\} \left(\lambda I(a,b)_1 + \Delta \beta I(a,b)_3 + \Delta \lambda I(a,b)_2 \right)$$
(7)

We will define the variable $V_{a,b}$ to be enterprise value at time a, which is the present value of net cash flow expected to be received over the time interval [a, b]. Using Equations (4) and (6) above the equation for enterprise value is...

$$V_{a,b} = \bar{N}_{a,b} - \bar{M}_{a,b} \tag{8}$$

Using Equations (5) and (7) above we can rewrite Equation (8) above as...

$$V_{a,b} = \epsilon R_0 \left(1 + \Delta \sin(\beta \phi) \right)^{-1} \operatorname{Exp}\left\{ \kappa a \right\} \left((\pi - \lambda) I(a, b)_1 + \Delta (\pi - \lambda) I(a, b)_2 - \Delta \beta I(a, b)_3 \right)$$
(9)

The Answers To Our Hypothetical Problem

Question 1: What is enterprise value at time zero given that cash flow is received in perpetuity?

Using Equations (3) above, the data in Table 2 above and the Appendix Equations below the values of the following integrals are...

$$I(0,\infty)_1 = 15.4946$$
 ...and... $I(0,\infty)_2 = 0.0408$...and... $I(0,\infty)_3 = -0.7937$ (10)

Using Equations (9) and (10) above and the data in Table 2 above the answer to the question is...

$$V_{a,b} = 0.60 \times 10,000,000 \times \left(1 + 0.25 \times \sin(1.2566 \times 1.25)\right)^{-1} \times \operatorname{Exp}\left\{0.1133 \times 0\right\} \times \left((0.1350 - 0.0488) \times 15.4946 + 0.25 \times (0.1350 - 0.0488) \times 0.0408 - 0.25 \times 1.2566 \times -0.7937\right) = 7,613,000$$
(11)

Question 2: Using the answer to the question above by how much do we overestimate enterprise value if we don't account for the business cycle?

To remove cyclicallity we set the variable Δ , which is defined as the sensitivity of cash flow to the business cycle, to zero. Using Equation (11) above and setting $\Delta = 0$ enterprise value becomes...

$$V_{a,b} = 0.60 \times 10,000,000 \times \left(1 + 0 \times \sin(1.2566 \times 1.25)\right)^{-1} \times \operatorname{Exp}\left\{0.1133 \times 0\right\} \times \left((0.1350 - 0.0488) \times 15.4946 + 0 \times (0.1350 - 0.0488) \times 0.0408 - 0 \times 1.2566 \times -0.7937\right) = 8,015,000$$
(12)

Question 3: What is enterprise value at the end of year 3 given that cash flow is received over the finite time interval [3, 20]?

Using Equations (3) above, the data in Table 2 above and the Appendix Equations below the values of the following integrals are...

$$I(3,20)_1 = 8.5052$$
 ...and... $I(3,20)_2 = 0.3460$...and... $I(3,20)_3 = 0.7671$ (13)

Using Equations (9) and (10) above and the data in Table 2 above the answer to the question is...

$$V_{3,20} = 0.60 \times 10,000,000 \times \left(1 + 0.25 \times \sin(1.2566 \times 1.25)\right)^{-1} \times \operatorname{Exp}\left\{0.1133 \times 3\right\} \left((0.1350 - 0.0488) \times 8.5052 + 0.25 \times (0.1350 - 0.0488) \times 0.3460 - 0.25 \times 1.2566 \times 0.7671\right)$$

= 3,370,000 (14)

Appendix

A. We will define the following equations... [3]

$$E_1 = \operatorname{Exp}\left\{\alpha t\right\} \quad \dots \text{and} \quad \dots \quad E_2 = \operatorname{Exp}\left\{\alpha t\right\} \sin(\beta \left(t + \phi\right)) \quad \dots \text{and} \quad \dots \quad E_3 = \operatorname{Exp}\left\{\alpha t\right\} \cos(\beta \left(t + \phi\right)) \tag{15}$$

B. Using the first equation in Equation (15) above we will make the following integral definition... [3]

$$I(a,b)_1 = \int_a^b E_1 \,\delta t = \operatorname{Exp}\left\{\alpha \,t\right\} \alpha^{-1} \bigg[_a^b \tag{16}$$

C. Using the second equation in Equation (15) above we will make the following integral definition... [3]

$$I(a,b)_2 = \int_a^b E_2 \,\delta t = \operatorname{Exp}\left\{\alpha \,t\right\} \left(\alpha \,\sin(\beta \,(t+\phi)) - \beta \,\cos(\beta \,(t+\phi))\right) \left(\alpha^2 + \beta^2\right)^{-1} \Big|_a^b \tag{17}$$

D. Using the third equation in Equation (15) above we will make the following integral definition... [3]

$$I(a,b)_3 = \int_a^b E_3 \,\delta t = \exp\left\{\alpha \,t\right\} \left(\beta \,\sin(\beta \,(t+\phi)) + \alpha \,\cos(\beta \,(t+\phi))\right) \left(\alpha^2 + \beta^2\right)^{-1} \Big|_a^b \tag{18}$$

References

- [1] Gary Schurman, Modeling The Business Cycle Part I, October, 2020.
- [2] Gary Schurman, Modeling The Business Cycle Part II, October, 2020.
- [3] Gary Schurman, Modeling The Business Cycle Mathematical Supplement, October, 2020.